Fast fuzzy clustering

نویسندگان

  • Tai Wai Cheng
  • Dmitry B. Goldgof
  • Lawrence O. Hall
چکیده

This paper presents a multistage random sampling fuzzy c-means based clustering algorithm, which signi cantly reduces the computation time required to partition a data set into c classes. A series of subsets of the full data set are used for classi cation in order to provide an approximation to the nal cluster centers. The quality of the nal partitions is equivalent to that of fuzzy c-means. The speed-up is normally a factor of 2-3 times, which is especially signi cant for high dimensional spaces and large data sets. Examples of the improved speed of the algorithm in two multi-spectral domains, magnetic resonance image segmentation and satellite image segmentation, are given. The results are compared with fuzzy c-means in terms of both the time required and the nal resulting partition. We show speed-up results from the application of fuzzy clustering to fuzzy rule generation in the domain of magnetic resonance imaging. Signi cant speed-up is shown in each example presented in the paper. Further, the convergence properties of fuzzy c-means are preserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

A Fast Fuzzy Clustering Algorithm

Clustering algorithms have been utilized in a wide variety of application areas. One of these algorithms is the Fuzzy C-Means algorithm (FCM). One of the problems with these algorithms is the time needed to converge. In this paper, a Fast Fuzzy C-Means algorithm (FFCM) is proposed based on experimentations, for improving fuzzy clustering. The algorithm is based on decreasing the number of dista...

متن کامل

Dna Algorithm and Fuzzy Evolutionary Clustering for Image Reconstruction

DNA algorithm and fuzzy evolutionary clustering techniques are used to classify damaged images and to reconstruct the original images. Experimental results show both methods are far more effective than the use of genetic algorithms or c-means clustering. Particularly, the method of fuzzy evolutionary clustering provides very fast convergence and accurate image reconstruction with absolute certa...

متن کامل

Neural Network Based Fuzzy C-MEANS Clustering Algorithm

In this paper, fuzzy c-means algorithm uses neural network algorithm is presented. In pattern recognition, fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms to group the high dimensional data into clusters. The proposed work involves two steps. First, a recently developed and Enhanced Kmeans Fast Leaning Artificial Neural Network (KFLANN) frame work is use...

متن کامل

Fuzzy c-Means Herding

Herding is the process of bringing individuals (e.g. animals) together into a group. More specifically, we consider self– organized herding as the process of moving a set of individuals to a given number of locations (cluster centers) without any external control. We formally describe the relation between herding and clustering and show that any clustering model can be used to control herding p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1998